Related Pages
Ae/AM/CE/ME 102 abc
Mechanics of Structures and Solids
9 units (306)

first, second, third terms
Prerequisites: ME 12 abc.
Introduction to continuum mechanics: kinematics, balance laws, constitutive laws with an emphasis on solids. Static and dynamic stress analysis. Two and threedimensional theory of stressed elastic solids. Wave propagation. Analysis of rods, plates and shells with applications in a variety of fields. Variational theorems and approximate solutions. Elastic stability.
Instructors:
Lapusta, Ortiz, Ravichandran
CE/Ae/AM 108 ab
Computational Mechanics
9 units (351)

first, second terms
Prerequisites: Ae/AM/ME/CE 102 abc or Ae/GE/ME 160 ab, or instructor's permission.
Numerical methods and techniques for solving initial boundary value problems in continuum mechanics (from heat conduction to statics and dynamics of solids and structures). Finite difference methods, direct methods, variational methods, finite elements in small strains and at finite deformation for applications in structural mechanics and solid mechanics. Solution of the partial differential equations of heat transfer, solid and structural mechanics, and fluid mechanics. Transient and nonlinear problems. Computational aspects and development and use of finite element code. Not offered 201718.
AM/ACM 127
Calculus of Variations
9 units (306)

third term
Prerequisites: ACM 95/100.
First and second variations; EulerLagrange equation; Hamiltonian formalism; action principle; HamiltonJacobi theory; stability; local and global minima; direct methods and relaxation; isoperimetric inequality; asymptotic methods and gamma convergence; selected applications to mechanics, materials science, control theory and numerical methods. Not offered 201718.
AM/CE/ME 150 abc
Graduate Engineering Seminar
1 unit

each term
Students attend a graduate seminar each week of each term and submit a report about the attended seminars. At least four of the attended seminars each term should be from the Mechanical and Civil Engineering seminar series. Students not registered for the M.S. and Ph.D. degrees must receive the instructor's permission. Graded pass/fail.
Instructor:
Staff
AM/CE 151 ab
Dynamics and Vibration
9 units (306)

first, second terms
Equilibrium concepts, conservative and dissipative systems, Lagrange's equations, differential equations of motion for discrete single and multi degreeoffreedom systems, natural frequencies and mode shapes of these systems (Eigen value problem associated with the governing equations), phase plane analysis of vibrating systems, forms of damping and energy dissipated in damped systems, response to simple force pulses, harmonic and earthquake excitation, response spectrum concepts, vibration isolation, seismic instruments, dynamics of continuous systems, Hamilton's principle, axial vibration of rods and membranes, transverse vibration of strings, beams (BernoulliEuler and Timoshenko beam theory), and plates, traveling and standing wave solutions to motion of continuous systems, Rayleigh quotient and the RayleighRitz method to approximate natural frequencies and mode shapes of discrete and continuous systems, frequency domain solutions to dynamical systems, stability criteria for dynamical systems, and introduction to nonlinear systems and random vibration theory.
Instructors:
Asimaki, Daraio
AM/ME 165 ab
Elasticity
9 units (306)

second, third terms
Prerequisites: Ae/Ge/ME 160 a and registered in Ae/Ge/ME 160 b.
Fundamental concepts and equations of elasticity. Linearized theory of elastostatics and elastodynamics: basic theorems and special solutions. Finite theory of elasticity: constitutive theory, semiinverse methods. Variational methods. Applications to problems of current interest. Not offered 201718.
AM 200
Advanced Work in Applied Mechanics
Hours and units by arrangement
A faculty mentor will oversee a student proposed, independent research or study project to meet the needs of graduate students. Graded pass/fail. The consent of a faculty mentor and a written report is required for each term of work.
AM 201
Advanced Topics in Applied Mechanics
9 units (306)
The faculty will prepare courses on advanced topics to meet the needs of graduate students.
Ae/AM/MS/ME 213
Mechanics and Materials Aspects of Fracture
9 units (306)

second term
Prerequisites: Ae/AM/CE/ME 102 abc (concurrently) or equivalent and instructor's permission.
Analytical and experimental techniques in the study of fracture in metallic and nonmetallic solids. Mechanics of brittle and ductile fracture; connections between the continuum descriptions of fracture and micromechanisms. Discussion of elasticplastic fracture analysis and fracture criteria. Special topics include fracture by cleavage, void growth, rate sensitivity, crack deflection and toughening mechanisms, as well as fracture of nontraditional materials. Fatigue crack growth and life prediction techniques will also be discussed. In addition, "dynamic" stress wave dominated, failure initiation growth and arrest phenomena will be covered. This will include traditional dynamic fracture considerations as well as discussions of failure by adiabatic shear localization. Not offered 201718
Ae/AM/CE/ME 214 ab
Computational Solid Mechanics
9 units (351)

first, second terms
Prerequisites: ACM 100 ab or equivalent; CE/AM/Ae 108 ab or equivalent or instructor's permission; Ae/AM/CE/ME 102 abc or Ae/Ge/ME 160 ab or instructor's permission.
Introduction to the use of numerical methods in the solution of solid mechanics and multiscale mechanics problems. First term: Variational principles. Finite element analysis. Variational problems in linear and finite kinematics. Time integration, initial boundary value problems. Elasticity and inelasticity. Constitutive modeling. Error estimation. Accuracy, stability and convergence. Iterative solution methods. Adaptive strategies. Second term: Multiscale modeling strategies. Computational homogenization in linear and finite kinematics. Spectral methods. Atomistic modeling and atomistictocontinuum coupling techniques. Not offered 201718.
Ae/AM/ME 215
Dynamic Behavior of Materials
9 units (306)

second term
Prerequisites: ACM 100 abc or AM 125 abc; Ae/AM/CE/ME 102 abc.
Fundamentals of theory of wave propagation; plane waves, wave guides, dispersion relations; dynamic plasticity, adiabatic shear banding; dynamic fracture; shock waves, equation of state. Not offered 201718.
Ae/AM/ME 223
Plasticity
9 units (306)

third term
Prerequisites: Ae/AM/CE/ME 102 abc or instructor's permission.
Theory of dislocations in crystalline media. Characteristics of dislocations and their influence on the mechanical behavior in various crystal structures. Application of dislocation theory to single and polycrystal plasticity. Theory of the inelastic behavior of materials with negligible time effects. Experimental background for metals and fundamental postulates for plastic stressstrain relations. Variational principles for incremental elasticplastic problems, uniqueness. Upper and lower bound theorems of limit analysis and shakedown. Slip line theory and applications. Additional topics may include soils, creep and ratesensitive effects in metals, the thermodynamics of plastic deformation, and experimental methods in plasticity. Not offered 201718.
Ae/AM/ME/Ge 225
Special Topics in Solid Mechanics
Units to be arranged

first, second, third terms
Subject matter changes depending on staff and student interest.
Instructor:
Rosakis
AM 300
Research in Applied Mechanics
Hours and units by arrangement
Research in the field of applied mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in research.
Published Date:
July 28, 2022