CMS 9
Introduction to research in Computing and Mathematical Sciences
1 unit (1-0-0)
|
first term
This course will introduce students to research areas in CS through weekly overview talks by Caltech faculty and aimed at first-year undergraduates. More senior students may wish to take the course to gain an understanding of the scope of research in computing and mathematical sciences. Graded pass/fail.
Instructor:
Low
CMS/ACM/IDS 107 ab
Linear Analysis with Applications
12 units (3-0-9)
|
first term, second term
Prerequisites: ACM/IDS 104 or equivalent, Ma 1b or equivalent.
Part a: Covers the basic algebraic, geometric, and topological properties of normed linear spaces, inner-product spaces and linear maps. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations. Topics: Completeness, Banach spaces (l_p, L_p), Hilbert spaces (weighted l_2, L_2 spaces), introduction to Fourier transform, Fourier series and Sobolev spaces, Banach spaces of linear operators, duality and weak convergence, density, separability, completion, Schauder bases, continuous and compact embedding, compact operators, orthogonality, Lax-Milgram, Spectral Theorem and SVD for compact operators, integral operators, Jordan normal form. Part b: Continuation of ACM 107a, developing new material and providing further details on some topics already covered. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations.Topics: Review of Banach spaces, Hilbert spaces, Linear Operators, and Duality, Hahn-Banach Theorem, Open Mapping and Closed Graph Theorem, Uniform Boundedness Principle, The Fourier transform (L1, L2, Schwartz space theory), Sobolev spaces (W^s,p, H^s), Sobolev embedding theorem, Trace theorem Spectral Theorem, Compact operators, Ascoli Arzela theorem, Contraction Mapping Principle, with applications to the Implicit Function Theorem and ODEs, Calculus of Variations (differential calculus, existence of extrema, Gamma-convergence, gradient flows) Applications to Inverse Problems (Tikhonov regularization, imaging applications).
Instructors:
Stuart, Hellmuth
CMS/ACM 117
Probability Theory and Computational Mathematics
12 units (3-0-9)
|
first term
Prerequisites: ACM 104 and ACM 116; or instructor's permission.
This course offers a rigorous introduction to probability theory with applications to computational mathematics. Emphasis is placed on nonasymptotic properties of probability models, rather than classical limit theorems. Topics include measure theory, integration, product measures, probability spaces, random variables and expectation, moments, Lp spaces, orthogonality, independence, concentration inequalities, distances between probability measures, the Berry-Esseen theorem, conditional expectation, and conditioning for Gaussian families.
Instructor:
Park
CMS/ACM/EE 122
Mathematical Optimization
12 units (4-0-8)
|
first term
Prerequisites: linear algebra.
This class develops mathematical optimization from the perspective of certificates, duality, and convexity. Topics covered include Fenchel and Lagrange duality; representation of convex sets; linear and semidefinite programming; integer programming; convex relaxations for intractable problems; and numerical methods. Throughout the course, applications of optimization to problems arising in various areas of science and engineering are presented.
Instructor:
Chandrasekaran
CMS/CS/IDS 139
Analysis and Design of Algorithms
12 units (3-0-9)
|
first term
Prerequisites: Ma 2, Ma 3, Ma/CS 6 a, CS 21, CS 38/138, and ACM/EE/IDS 116 or CMS/ACM/EE 122 or equivalent.
This course develops core principles for the analysis and design of algorithms. Basic material includes mathematical techniques for analyzing performance in terms of resources, such as time, space, and randomness. The course introduces the major paradigms for algorithm design, including greedy methods, divide-and-conquer, dynamic programming, linear and semidefinite programming, randomized algorithms, and online learning.
Instructor:
Schulman
CMS/CS/Ec/EE 144
Networks: Structure & Economics
12 units (3-4-5)
|
second term
Prerequisites: Ma 2, Ma 3, Ma/CS 6 a, and CS 38, or instructor permission.
Social networks, the web, and the internet are essential parts of our lives, and we depend on them every day. CS/EE/IDS 143 and CMS/CS/EE/IDS 144 study how they work and the "big" ideas behind our networked lives. In this course, the questions explored include: What do networks actually look like (and why do they all look the same)?; How do search engines work?; Why do epidemics and memes spread the way they do?; How does web advertising work? For all these questions and more, the course will provide a mixture of both mathematical analysis and hands-on labs. The course expects students to be comfortable with graph theory, probability, and basic programming.
Instructor:
Mazumdar
CMS/CS/CNS/EE/IDS 155
Machine Learning & Data Mining
12 units (3-3-6)
|
second term
Prerequisites: CS/CNS/EE 156 a. Having a sufficient background in algorithms, linear algebra, calculus, probability, and statistics, is highly recommended.
This course will cover popular methods in machine learning and data mining, with an emphasis on developing a working understanding of how to apply these methods in practice. The course will focus on basic foundational concepts underpinning and motivating modern machine learning and data mining approaches. We will also discuss recent research developments.
Instructor:
Yue
CMS 270
Advanced Topics in Computing and Mathematical Sciences
Units by arrangement
|
second term
Advanced topics that will vary according to student and instructor interest. May be repeated for credit. Not offered 2025-26.
Instructor:
Staff
CMS 290 abc
Computing and Mathematical Sciences Colloquium
1 unit
|
first, second, third terms
Prerequisites: Registration is limited to graduate students in the CMS department only.
This course is a research seminar course covering topics at the intersection of mathematics, computation, and their applications. Students are asked to attend one seminar per week (from any seminar series on campus) on topics related to computing and mathematical sciences. This course is a requirement for first-year PhD students in the CMS department.
Instructor:
Hoffmann
CMS 300
Research in Computing and Mathematical Sciences
Hours and units by arrangement
Research in the field of computing and mathematical science. By arrangement with members of the staff, properly qualified graduate students are directed in research.
Instructor:
Staff
Published Date:
Aug. 28, 2025